Alterações na capacidade antioxidante, níveis de peroxidação lipídica e nitritos em pacientes com Diabetes tipo 2
DOI:
https://doi.org/10.15448/1980-6108.2024.1.45632Palavras-chave:
diabete mellitus, hiperglicemia, estresse oxidativo, nitritosResumo
Objetivos: este estudo de caso-controle busca investigar marcadores oxidativos, capacidade antioxidante e níveis de glicose em pacientes com Diabetes mellitus tipo 2 (T2DM), em comparação com participantes saudáveis de perfil semelhante. Adicionalmente, analisa-se o impacto da glicose nessas variáveis. Metodologia: foram incluídos 20 pacientes com T2DM e hiperglicemia, bem como 20 voluntários saudáveis no grupo controle (CG). Nos participantes, os níveis de glicose, malondialdeído, nitritos e capacidade antioxidante total (TAC) foram determinados no plasma. Para analisar diferenças significativas entre as variáveis nos grupos, aplicaram-se o teste t de Student ou Mann– Whitney. O teste de correlação linear de Pearson foi empregado para avaliar associações entre as variáveis. Resultados: os níveis de glicose e TAC mostraram elevação significativa no grupo T2DM em comparação com o CG. Participantes do grupo T2DM apresentaram redução nos níveis de malondialdeído e nitritos (1,83±0,84 µM/L e 29,5 ± 16,6 µmol/L, respectivamente) em relação ao CG (4,00±1,11 µM/L e 82,9±29,2 µmol/L, respectivamente), ambos demonstrando forte correlação positiva (p = 0,0002). Conclusão: pacientes com Diabetes mellitus tipo 2 exibem alterações no estado redox, evidenciadas pela diminuição da peroxidação lipídica e dos níveis de nitritos, indicando comprometimento na via constitutiva de produção de óxido nítrico. Esses achados ressaltam a complexa relação entre estresse oxidativo, antioxidantes e metabolismo da glicose.
Downloads
Referências
Raya PM, Blasco FJA, Hunt B, Martin V, Thorsted BL, Basse A, et al. Evaluating the long-term costeffectiveness of fixed-ratio combination insulin degludec/liraglutide (IDegLira) for type 2 diabetes in Spain based on real-world clinical evidence. Diabetes Obes Metab. 2019;21(6):1349-56. https://doi.org/10.1111/dom.13660 DOI: https://doi.org/10.1111/dom.13660
Nouwen A, Adriaanse MC, van Dam K, Iversen MM, Viechtbauer W, Peyrot M, et al. Longitudinal associations between depression and diabetes complications: evidence from a systematic review and meta-analysis. Diabet Med. 2019;36(12):1562-72. https://doi.org/10.1111/dme.14054 DOI: https://doi.org/10.1111/dme.14054
International Diabetes Federation (IDF). IDF Diabetes Atlas. 10th ed. Brussels: International Diabetes Federation; 2021.
Bertoluci MC, Moreira RO, Faludi A, Izar MC, Schaan BD, Valerio CM, et al. Brazilian evidence-based guideline on prevention of cardiovascular disease in patients with diabetes: positioning of the Brazilian Society of Diabetes (SBD), from the Brazilian Society of Cardiology (SBC) and of the Brazilian Society of Endocrinology and Metabolism (SBEM). Arq Bras Cardiol. 2017;9:1-36. https://doi.org/10.1186/s13098-017-0251-z DOI: https://doi.org/10.1186/s13098-017-0251-z
Telo GH, Cureau FV, Szklo M, Bloch KV, Schaan BD. Prevalence of type 2 diabetes among adolescents in Brazil: Findings from study of cardiovascular risk in adolescents (ERICA). Pediatr Diabetes. 2019;20(4):389- 96. https://doi.org/10.1111/pedi.12828 DOI: https://doi.org/10.1111/pedi.12828
Alcaraz A, Bardach AE, Espinola N, Perelli L, Rodriguez Cairoli F, La Foucade A, et al. Health and economic burden of disease of sugar-sweetened beverage consumption in four latin american and caribbean countries: A modeling study. BMJ Open. 2023;13(2):e062809. https://doi.org/10.1136/bmjopen-2022-062809” https://doi.org/10.1136/bmjopen-2022-062809 DOI: https://doi.org/10.1136/bmjopen-2022-062809
Błaszkiewicz M, Walulik A, Florek K, Górecki I, Sławatyniec O, Gomułka K. Advances and perspectives in relation to the molecular basis of diabetic retinopathy-A review. Biomedicines. 2023;11(11):2951. https://doi.org/10.3390/biomedicines11112951 DOI: https://doi.org/10.3390/biomedicines11112951
Clapés S, Torres O, Companioni M, Villariño U, Broche F, Céspedes E. Peroxidación lipídica y otros indicadores de estrés oxidativo en pacientes diabéticos. Rev Cubana Invest Biomed. 2001;2:93-8.
Carrizales González MS, Torres Rodríguez M. Serum lipids, fatty acids, lipid peroxidation and nitric oxide in patients with type 2 diabetes mellitus. Salus. 2012;16(2):15-22.
10. Turner KD, Kronemberger A, Bae D, Bock JM, Hughes WE, Ueda K, et al. Effects of combined inorganic nitrate and nitrite supplementation on cardiorespiratory fitness and skeletal muscle oxidative capacity in type 2 diabetes: a pilot randomized controlled trial. Nutrients. 2022;14(21):4479. https://doi.org/10.3390/nu14214479 DOI: https://doi.org/10.3390/nu14214479
11. Monickaraj F, Aravind S, Gokulakrishnan K, Sathishkumar C, Prabu P, Prabu D, et al. Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem. 2012;365(1-2):343-50. https://doi.org/10.1007/s11010-012-1276-0 DOI: https://doi.org/10.1007/s11010-012-1276-0
12. Sant’Ana Dusse LM Vieira LM, Carvalho MG. Nitric oxide revision. J Bras Patol Med Lab. 2003;39(4):343-50. https://doi.org/10.1590/S1676-24442003000400012 DOI: https://doi.org/10.1590/S1676-24442003000400012
13. Konukoglu D, Dogan E, Turha MS, Hatemi H. Impaired glucose tolerance: Its relevance to early endothelial dysfunction. Horm Metab Res. 2003;35 (10):607-10. https://doi.org/10.1055/s-2003-43508 DOI: https://doi.org/10.1055/s-2003-43508
14. Pereira EC, Ferderbar S, Bertolami MC, Faludi AA, Monte O, Xavier HT, et al. Biomarkers of oxidative stress and endothelial dysfunction in glucose intolerance and diabetes mellitus. Clin Biochem. 2008;41(18):1454-60. https://doi.org/10.1016/j.clinbiochem.2008.08.074 DOI: https://doi.org/10.1016/j.clinbiochem.2008.08.074
15. Shati AA, Maarouf A, Dawood AF, Bayoumy NM, Alqahtani YA, Eid RA, et al. Lower extremity arterial disease in type 2 diabetes mellitus: metformin inhibits femoral artery ultrastructural alterations as well as vascular tissue levels of AGEs/ET-1 axis-mediated inflammation and modulation of vascular iNOS and eNOS expression. Biomedicines. 2023;11(2):361. https:// doi.org/10.3390/biomedicines11020361 DOI: https://doi.org/10.3390/biomedicines11020361
16. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT 2023 policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2023;133(4):391-6. https://doi.org/10.1111/bcpt.13944 DOI: https://doi.org/10.1111/bcpt.13944
17. Manzini JL. Declaración de Helsinki: principios éticos para la investigación médica sobre sujetos humanos. Acta Bioethica. 2000;6(2):321-34. http://dx.doi. org/10.4067/S1726-569X2000000200010 DOI: https://doi.org/10.4067/S1726-569X2000000200010
18. Ferrante AA, Martins IS, Carvalho Silva LA, Percário S, Souza Ferreira ME Analytical methodology for determination of the plasma antioxidant capacity through the radical 2,2-azino-bis-3-ethylbenzthiazoline-6- sulfonic acid (ABTS). Aust J Basic Appl Sci. 2019;13(3):19- 22. https://doi.org/10.22587/ajbas.2019.13.3.3 DOI: https://doi.org/10.22587/ajbas.2019.13.3.3
Costa MC, Costa Santos RC Lima ES. A simple automated procedure for thiol measurement in human serum samples. J Bras Patol Med Lab. 2006;42(5):345-50. https://doi.org/10.1590/S1676-24442006000500006 DOI: https://doi.org/10.1590/S1676-24442006000500006
Silva Pereira R, Piva JS, Tatsch E, Kober H, Gomes P, Rodrigues de Oliveira J, et al. A simple, fast, and inexpensive automated technique for measurement of plasma nitrite. Clin Chem Lab Med. 2010;48(12):1837-9. https://doi.org/10.1515/CCLM.2010.332 DOI: https://doi.org/10.1515/CCLM.2010.332
Vetter VM, Özince DD, Kiselev J, Düzel S, Demuth I. Self-reported and accelerometer-based assessment of physical activity in older adults: results from the Berlin Aging Study II. Sci Rep. 2023;13:10047. https://doi.org/10.1038/s41598-023-36924-5 DOI: https://doi.org/10.1038/s41598-023-36924-5
Fernandes de Freitas DH, Dias MC, Nascente Costa SH, Teodoro Cordeiro Silva AM Evaluation of glycemic control by A1c, estimated average glycemia, and fasting glycemia in diabetic patients. Rev Bras Anal Clin. 2019;51(1):70-5. https://doi.org/10.21877/2448-3877.201900798 DOI: https://doi.org/10.21877/2448-3877.201900798
Smith-Palmer J, Brändle M, Trevisan R, Orsini Federici M, Liabat S, Valentine W. Assessment of the association between glycemic variability and diabetesrelated complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:273-84. https://doi.org/10.1016/j.diabres.2014.06.007 DOI: https://doi.org/10.1016/j.diabres.2014.06.007
Gutiérrez-Zúñiga R, Alonso de Leciñana M, DelgadoMederos R, Gállego-Cullere J, Rodríguez-Yáñez M, Martínez-Zabaleta M, et al. Beyond hyperglycemia: glycaemic variability as a prognostic factor after acute ischemic stroke. Neurología (Engl Ed). 2020; S0213-4853(20)30272-3. https://doi.org/10.1016/j.nrl.2020.06.018 DOI: https://doi.org/10.1016/j.nrl.2020.06.018
Sá CR; Rubens SA; Ferraz de Araújo Navas EA. Diabetes mellitus: avaliação e controle através da glicemia em jejum e hemoglobina glicada. Revista Univap. 2014;20(35):15-23. https://doi.org/10.18066/revunivap.v20i35.129 DOI: https://doi.org/10.18066/revunivap.v20i35.129
Quadros Gomes AR, Cunha N, Pompeu Varela EL, Cordovil Brígido HP, Vale VV, Dolabela M, et al. Oxidative stress in malaria: potential benefits of antioxidant therapy. Int J Mol Sci. 2022;23(11):5949. https://doi.org/10.3390/ijms23115949 DOI: https://doi.org/10.3390/ijms23115949
Campos Caldas Rosa EC, Cruz dos Santos RR, Gris EF, Ferreira EA, Rocha Neves FA Coelho MS, et al. Evaluation of oxidative stress and lipoperoxidation (OLP) in patients with type 2 diabetes mellitus (DM2) treated at the University Hospital of Brasília (HUB). Braz J Health Rev. 2019;2(5):4236-56. https://doi.org/10.34119/bjhrv2n5-029 DOI: https://doi.org/10.34119/bjhrv2n5-029
Bonnefont-Rousselot D, Raji B, Walrand S, GardèsAlbert M, Jore D, Legrand A, et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism. 2003;52(5):586-9. https://doi.org/10.1053/meta.2003.50093 DOI: https://doi.org/10.1053/meta.2003.50093
Beisswenger P, Ruggiero-Lopez D. Metformin inhibition of glycation processes. Diabetes Metab. 2003; 29(4 Pt 2):6S95-6S103. https://doi.org/10.1016/S1262-3636(03)72793-1 DOI: https://doi.org/10.1016/S1262-3636(03)72793-1
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203-30. https://doi.org/10.1515/hsz-2013-0241 DOI: https://doi.org/10.1515/hsz-2013-0241
Maellaro E, Leoncini S, Moretti D, Del Bello B, Tanganelli I, De Felice C, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients. Acta Diabetol. 2013;50(4):489-95. https://doi.org/10.1007/s00592- 011-0274-0 DOI: https://doi.org/10.1007/s00592-011-0274-0
Reis JS, Veloso CA, Mattos RT, Purish S, NogueiraMachado JA. Oxidative stress: a review on metabolic signaling in type 1 diabetes. Arq Bras Endocrinol Metabol. 2008;52(7):1096-105. https://doi.org/10.1590/S0004-27302008000700005 DOI: https://doi.org/10.1590/S0004-27302008000700005
Kesavulu MM, Giri R, Kameswara Rao B, Apparao C. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab. 2000;26(5):387-92.
Pieme CA, Tatangmo JA, Simo G, Biapa Nya PC, Ama Moor VJ Moukette BM, et al. Relationship between hyperglycemia, antioxidant capacity, and some enzymatic and non-enzymatic antioxidants in african patients with type 2 diabetes. BMC Res Notes. 2017;10(1):141. https://doi.org/10.1186/s13104-017-2463- 6 DOI: https://doi.org/10.1186/s13104-017-2463-6
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Metabolic effects of l-citrulline in type 2 diabetes. Acta Physiol. 2023;237(3):e13937. https://doi.org/10.1111/apha.13937 DOI: https://doi.org/10.1111/apha.13937
Zhao L, Zhang CL, He L, Chen Q, Liu L, Kang L, et al. Restoration of autophagic flux improves endothelial function in diabetes through lowering mitochondrial ROS-mediated eNOS monomerization. Diabetes. 2022;71(5):1099-114. https://doi.org/10.2337/db21-0660 DOI: https://doi.org/10.2337/db21-0660
Habiba E, Ali S, Ghanem Y, Sharaki O, Hewedy W. Effect of oral versus parenteral vitamin D3 supplementation on nuclear factor-B and platelet aggregation in type 2 diabetic patients. Can J Physiol Pharmacol. 2023 Nov 1;101(11):610-9. https://doi.org/10.1139/cjpp-2022-0359 DOI: https://doi.org/10.1139/cjpp-2022-0359
Zhang L, Jiang F, Xie Y, Chen Q, Liu L, Kang L, et al. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne). 2023 Mar 21;14:1073878. https://doi.org/10.3389/fendo.2023.1073878 DOI: https://doi.org/10.3389/fendo.2023.1073878
Kumaramanickavel G, Sripriya S, Vellanki RN, Upadyay NK, Badrinath SS, Rajendran V, et al. Inducible nitric oxide synthase gene and diabetic retinopathy in Asian Indian patients. Clin Genet. 2002 May;61(5):344- 8. https://doi.org/10.1046/j.0009-9163.2002.00251.x DOI: https://doi.org/10.1046/j.0009-9163.2002.00251.x
Ghasemi A, Gheibi S, Kashfi K, Jeddi S. Anti-oxidant effect of nitrite in the pancreatic islets of type 2 diabetic male rats. Iran J Basic Med Sci. 2023;26(4):420-28. https://doi.org/10.22038/ijbms.2023.68245.14900
Wen L, Chen C, Zhou K. Relationship between abdominal obesity and insulin resistance, growth hormone, and insulin-like growth factor-1 in Individuals with Type 2 diabetes. Cell Mol Biol. 2002;68(12):36-41. https://doi.org/10.14715/cmb/2022.68.12.8 DOI: https://doi.org/10.14715/cmb/2022.68.12.8
Mishra S, Mishra BB. Study of lipid peroxidation, nitric oxide end product, and trace element status in type 2 diabetes mellitus with and without complications. Int J Appl Basic Med Res. 2017;7(2):88-93. https://doi.org/10.4103/2229-516X.205813 DOI: https://doi.org/10.4103/2229-516X.205813
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Scientia Medica
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.