Familiarity interferes in the recognition and nature of the memorized representation, not in the process of retrieval

Authors

DOI:

https://doi.org/10.15448/1980-8623.2020.1.29844

Keywords:

familiarity, working memory, unitization, dynamic visual noise

Abstract

Our ability to save is greater for more familiar stimuli than for less familiar. However, the specific processes affected by familiarity are still less known. We investigate the familiarity effect on the retrieval of visual representations in a recognition task, using the retroactive cue paradigm. A visual interference task (DVN-Dynamic Visual Noise) was used as visual nature indicator of recovered representations. The familiarity, defined as to the repeated exposure to the same stimuli set, was manipulated between two groups of participants. For one group (Group with Repeated Stimuli) the experimental tests contained stimuli drawn from the same set of 8 Chinese characters. For the other group (Group with Unpublished Stimuli) the tests were formed by unpublished stimuli, drawn from a set of 483 Chinese characters. DVN was presented in the interval between the retroactive tip and the test stimulus in half the tests. The performance of both groups improves on the task recognition throughout the experimental session, but more sharply at the group that worked with Repeated Stimuli. The retrieval effect remains unchanged throughout the session and independs of familiarity, however the more familiar representation is more susceptible to DVN, suggesting the repeated exposure to the same stimuli allowed the generation of visual representations.

Downloads

Download data is not yet available.

Author Biographies

Isabella Wada e Pucci, Universidade de São Paulo, SP

Bacharel em Psicologia.

César Aléxis Galera, Universidade de São Paulo, SP

Doutor

References

Ahmad, F. N., Fernandes, M., Hockley, W. E. (2015). Improving associative memory in older adults with unitization. Neuropsychol. Dev. Cogn. Sect. B Aging Neuropsychol. Cogn. 22(4), 452–472. http://dx.doi.org/10.1080/13825585.2014.980216.

Baddeley, A. (2007). Working memory, thought, and action. Oxford: Clarendon.

Bader, R., Opitz, B., Reith, W., Mecklinger, A. (2014). Is a novel conceptual unit more than the sum of its parts?: FMRI evidence from an associative recognition memory study. Neuropsychologia, 61, 123–134. http://dx.doi.org/10.1016/j.neuropsychologia.2014.06.006.

Bower, G. H. (2000). A brief history of memory research. The Oxford handbook of memory, 3-32.

Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464. http://dx.doi.org/10.1073/pnas.1520027113.

D’Angelo, M. C., Smith, V. M., Kacollja, A., Zhang, F., Binns, M. A., Barense, M. D., & Ryan, J. D. (2016). The effectiveness of unitization in mitigating age-related relational learning impairments depends on existing cognitive status. Aging, Neuropsychology, and Cognition, 23(6), 667–690. http://dx.doi.org/10.1080/13825585.2016.1158235.

Delhaye, E., & Bastin, C. (2018). The impact of aging on associative memory for preexisting unitized associations. Aging, Neuropsychology, and Cognition, 25:1, 70-98. http://dx.doi.org/10.1080/13825585.2016.1263725.

Galera, C., & Quinn, G. (2014, julho). Visual buffer and retrieval of visual information from working memory. Comunicação apresentada em International Conference on Working Memory. Cambridge, UK.

Goldstone, R. L. (2000). Unitization during category learning. Journal of Experimental psychology. Human Perception and Performance, 26, 86-112. http://dx.doi.org/10.1037/0096-1523.26.1.86.

Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176–1194. http://dx.doi.org/10.1162/089892903322598139.

Hebb, D. O. (1961). Distinctive features of learning in the higher animal. In B. F. Delafresnaye (Ed.), Brain mechanisms and learning (pp. 37–46). Oxford: Blackwell.

James, T. W., & Gauthier, I. (2006). Repetition induced changes in BOLD response reflect accumulation of neural activity. Human brain mapping, 27(1), 37-46. http://dx.doi.org/10.1002 / hbm.20165.

Kandel, E., Schwartz, J., Jessell, T., Siegelbaum, S., & Hudspeth, A. J. (2014). Princípios de Neurociências-5. AMGH Editora.

Kibbe, M. M., & Feigenson, L. (2016). Infants use temporal regularities to chunk objects in memory. Cognition, 146, 251–263. http://dx.doi.org/10.1016/j.cognition.2015.09.022.

Kosslyn, S. M. Image and Brain: The Resolution of the Imagery Debate. Cambridge: Mit Press, p 516, 1994.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery. Oxford University Press.

Landman, R., Spekreijse, H., & Lamme, V. A. F. (2003). Large capacity storage of integrated objects before change blindness. Vision Research, 43, 149–164. https://doi.org/10.1016/S0042-6989(02)00402-9.

Lepsien, J., & Nobre, A. (2006). Cognitive control of attention in the human brain: Insights from orienting attention to mental representations. Brain Research, 1105, 20-31. http://dx.doi.org/10.1016/jbrainres.2006.03.033.

Li, B., Mao, X., Wang, Y., & Guo, C. (2017). Electrophysiological Correlates of Familiarity and Recollection in Associative Recognition: Contributions of Perceptual and Conceptual Processing to Unitization. Front. Hum. Neurosci. 11:125. http://dx.doi.org/10.3389/fnhum.2017.00125.

McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114, 159-188. http://dx.doi.org/10.1037/0096-3445.114.2.159.

McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative learning: I. Latent inhibition and perceptual learning. Animal Learning & Behavior, 28, 211-246. http://dx.doi.org/10.3758/BF03200258.

Memel, M., & Ryan, L. (2017). Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation. Neuropsychologia, 100, 195-206. http://dx.doi.org/10.1016/j.neuropsychologia.2017.04.031.

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63(2), 81. http://dx.doi.org/10.1037/h0043158.

Orme, E., Brown, L., & Riby, L. (2017). Retrieval and monitoring processes during visual working memory: An ERP study of the benefit of visual semantics. Frontiers in Psychology, 8. p. 1080. http://doi.org/10.3389/fpsyg.2017.01080.

Parks, C. M., & Yonelinas, A. P. (2015). The importance of unitization for familiarity-based learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 881-903. http://dx.doi.org/10.1037/xlm0000068.

Perlman, A., Pothos, E. M., Edwards, D. J., & Tzelgov, J. (2010). Task-relevant chunking in sequence learning. Journal of Experimental Psychology: Human Perception and Performance, 36(3), 649-661. http://dx.doi.org/10.1037/a0017178.

Pucci, I. W; Galera, C. A (2014, setembro). Recuperação da Informação da memória de Trabalho Visual: A necessidade de um buffer visual. Pôster apresentado no 22° Simpósio Internacional de Iniciação Científica da USP (SIICUSP), Ribeirão Preto, SP.

Quinn, J. G., & McConnell, J. (1996). Indications of the functional distinction between the components of visual working memory. Psychologische Beitrage, 38(3-4), 355–367. http://dx.doi.org/10.1080/713755613.

Reder, L. M., Liu, X. L., Keinath, A., & Popov, V. (2016). Building knowledge requires bricks, not sand: The critical role of familiar constituents in learning. Psychonomic Bulletin & Review, 23, 271–277. http://dx.doi.org/10.3758/s13423-015-0889-1.

Reder, L. M., Paynter, C., Diana, R. A., Ngiam, J., & Dickison, D. (2007). Em B. Ross& A. S. Benjamin (Eds.). The psychology of learning and motivation (pp. 271–312). New York, NY: Academic Press.

Riby, L. M., & Orme, E. (2013). A familiar pattern? Semantic memory contributes to the enhancement of visuo-spatial memories. Brain and cognition, 81(2), 215-222. http://dx.doi.org/10.1016/j.bandc.2012.10.011.

Robey, A., & Riggins, T. (2017). Increasing relational memory in childhood with unitization strategies. Memory & Cognition, 46(1), 100-111. http://doi.org/10.3758/s13421-017-0748-6.

Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime reference Guide (Version 1.2). Psychology Software Tools Inc.

Schyns, P. G., Goldstone, R. L., & Thibaut, J. P. (1998). The development of features in object concepts. The Behavioral and Brain Sciences, 21, 1-17. http://doi.org/10.1017%2FS0140525X98000107.

Shiffrin, P. G., & Lightfoot, N. (1997). Perceptual learning of alphanumeric-like characters. Em R. L. Goldstone, P. G. Schyns, & D. L. Medin (Eds.). The psychology of learning and motivation (Vol. 36, pp. 45-82). San Diego, CA: Academic Press.

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: applications to dementia and amnesia. Journal of Experimental Psychology: General, 117(1), 34-50. http://dx.doi.org/10.1037/0096-3445.117.134.

Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78(7), 1839-1860. http://dx.doi.org/10.3758/s13414-016-1108-5.

Vagnot, C. (2014). Efficacité d'une activité discriminante: quand isolation et action participent à l'émergence d'un jugement de reconnaissance. Dissertação de doutorado, Psychologie Université Paul Valéry-Montpellier-III, França.

Published

2020-05-15

How to Cite

Pucci, I. W. e, & Galera, C. A. (2020). Familiarity interferes in the recognition and nature of the memorized representation, not in the process of retrieval. Psico, 51(1), e29844. https://doi.org/10.15448/1980-8623.2020.1.29844

Issue

Section

Articles