Multitrait-multimethod model applied on the reasoning and spatial intelligence test (TRAE)
DOI:
https://doi.org/10.15448/1980-8623.2022.1.36638Keywords:
reasoning, intelligence, test validity, reliabilityAbstract
In the present study we obtained evidence of the reliability and the convergent and discriminant validity of the Abstract and Spatial Reasoning Test (TRAE, in Portuguese). The TRAE and the BPR-5 (subtests AR, SR, VR, and NR) were both administered to 149 high school students (52.3% male; Mage=16.98, SD=.87). The total scores of the TRAE showed adequate reliability (.76), despite relatively low reliability of its subtests. The multitrait-multimethod approach in a structural equation modeling context showed that the inclusion of the abstract reasoning (AR) and spatial reasoning (SR) factors improved the model fit. These results support the convergent validity of the TRAE. However, an alternative model with perfect correlations between the AR and SR factors seemed plausible as well, indicating a lack of discriminant validity. These findings support the reliability and the convergent validity of the general scale of the TRAE. Meanwhile, caution is needed with the interpretation of the subtests.
Downloads
References
Almeida, L., & Primi, R. (2015). BPR-5: Baterias de provas de raciocínio. Manual técnico (2nd ed.). Casa do Psicólogo.
Beaty, R. E., Nusbaum, E. C., & Silvia, P. J. (2014). Does insight problem solving predict real-world creativity? Psychology of Aesthetics, Creativity, and the Arts, 8(3), 287-292. https://doi.org/10.1037/a0035727
Beaujean, A. A., Firmin, M. W., Michonski, J. D., Berry, T., & Johnson, C. (2010). A multitrait-multimethod examination of the reynolds intellectual assessment scales in a college sample. Assessment, 17(3), 347-360. https://doi.org/10.1177/1073191109356865
Byrne, B. M. (2012). Structural equation modeling with Mplus: Basic concepts, applications and programming. Routledge.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81-105. https://doi.org/10.1037/h0046016
Cormier, D. C., Bulut, O., McGrew, K. S., & Frison, J. (2016). The role of Cattell-Horn-Carroll (CHC) cognitive abilities in predicting writing achievement during the school-age years. Psychology in the Schools, 53(8), 787-803. https://doi.org/10.1002/pits.21945
Eid, M. (2010). Multitrait-multimethod-matrix. In N. Salkind (Ed.), Encyclopedia of research design (pp. 850–855). Sage.
Eid, M., Lischetzke, T., & Nussbeck, F. W. (2006). Structural Equation Models for Multitrait-Multimethod Data. In M. Eid & E. Diener (Eds.), Handbook of multimethod measurement in psychology (pp. 283–299). American Psychological Association. https://doi.org/10.1037/11383-019
Fan, X. (2003). Two approaches for correcting correlation attenuation caused by measurement error: Implications for research practice. Educational and Psychological Measurement, 63(6), 915-930. https://doi.org/10.1177/0013164403251319
Gignac, G. E. (2014). Fluid intelligence shares closer to 60% of its variance with working memory capacity and is a better indicator of general intelligence. Intelligence, 47, 122-133. https://doi.org/10.1016/j.intell.2014.09.004
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118
Jacobs, K. E., & Roodenburg, J. (2014). The development and validation of the Self-Report Measure of Cognitive Abilities: A multitrait-multimethod study. Intelligence, 42(1), 5-21. https://doi.org/10.1016/j.intell.2013.09.004
Keith, T. Z., & Reynolds, M. R. (2010). Cattell-Horn-Carroll abilities and cognitive tests: What we’ve learned from 20 years of research. Psychology in the Schools, 47(7), 635-650. https://doi.org/10.1002/pits.20496
Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). The Guilford Press.
Koch, T., Eid, M., & Lochner, K. (2018). Multitrait-Multimethod- Analysis: The Psychometric Foundation of CFA-MTMM Models. In P. Irwing, T. Booth, & D. J. Hughes (Eds.), The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test Development (pp. 781-846). Wiley-Blackwell. https://doi.org/10.1002/9781118489772.ch18
Lance, C. E., Dawson, B., Birkelbach, D., & Hoffman, B. J. (2010). Method effects, measurement error, and substantive conclusions. Organizational Research Methods, 13(3), 435-455. https://doi.org/10.1177/1094428109352528
Laros, J. A., Almeida, G. O. M., Valentini, F., & Lima, R. M. F. (2015). Dimensionalidade e evidências de validade convergente do SON-R 6-40. Temas Em Psicologia, 23(4), 929-945. https://doi.org/10.9788/tp2015.4-10
Laros, J. A., Jesús, G. R., & Karino, C. A. (2013). Validação brasileira do teste não-verbal de inteligência SON-R 2½-7[a]. Avaliação Psicológica: Interamerican Journal of Psychological Assessment, 12(2), 233-242.
Li, D., & Shi, J. (2019). Fluid intelligence, trait emotional intelligence and academic performance in children with different intellectual levels. High Ability Studies, 1–19. https://doi.org/10.1080/13598139.2019.1694493
Lima, R. M. F., & Laros, J. A. (2017). Evidências de validade convergente e discriminante dos escores do SON-R 6-40. Psicologia - Teoria e Prática, 19(1). https://doi.org/10.5935/1980-6906/psicologia.v19n1p107-120
McGrew, K. S., & Flanagan, D. P. (1998). The intelligence test desk reference (ITDR) - Gc-Gf cross battery assessment. Allyn and Bacon.
Nunes, C. S. S., & Nunes, M. F. O. (2015). Matrizes Progressivas Avançadas de Raven (1st ed.). Casa do Psicólogo.
Peng, P., Wang, T., Wang, C. C., & Lin, X. (2019). A meta- analysis on the relation between fluid intelligence and reading/ mathematics: Effects of tasks, age, and social economics status. Psychological Bulletin, 145(2), 189-236. https://doi.org/10.1037/bul0000182
Primi, R. (2002). Inteligência fluida: definição fatorial, cognitiva e neuropsicológica. Paidéia, 12(23), 57-75. https://doi.org/10.1590/S0103-863X2002000200005
Primi, R., & Almeida, L. (2000). Estudo de validação da Bateria de Provas de Raciocínio (BPR-5). Psicologia: Teoria e Pesquisa, 16(2), 165-173. https://doi.org/10.1590/S0102-37722000000200009
Primi, R., Correia, T. A., & Almeida, L. (2019). Bateria de Provas de Raciocínio (BPR-5). In C. S. Hutz, D. R. Bandeira, & C. M. Trentini (Eds.), Avaliação da Personalidade e Inteligência (1st ed., pp. 109-122). Artmed.
Rabelo, I. S., Pacanaro, S. V., Leme, I. F. A., Ambiel, R. A. M., & Alves, G. A. da S. (2015). Teste não verbal de inteligência geral: BETA-III: Subtestes raciocínio matricial e códigos (1st ed.). Casa do Psicólogo.
Rueda, F. J. M., Noronha, A. P. P., Sisto, F., Santos, A. A. A., & Castro, N. R. (2016). Manual Técnico WISC-IV (1st ed.). Casa do Psicólogo.
Schneider, W. J., & McGrew, K. S. (2018). The Cattell– Horn–Carroll Theory of Cognitive Abilities. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment: theories, tests, and issues (4th ed., pp. 73-163). Guilford Press.
Sistema de Avaliação de Testes Psicológicos - SATEPSI. (2019). Testes favoráveis. Recuperado de http://satepsi.cfp.org.br/testesFavoraveis.cfm
Sisto, F. (2012). Teste Conciso de Raciocínio (1st ed.). Casa do Psicólogo.
Sternberg, R. J. (2011). The theory of successful intelligence. In R. J. Sternberg & S. B. Kaufman (Eds.), Cambridge Handbook of Intelligence (pp. 504-527). Cambridge University Press.
Valentini, F., Laros, J. A., & de Barros Mose, L. (2020). Validity Evidence of the Abstract and Spatial Reasoning Test. Trends in Psychology, 1-16. https://doi.org/10.1007/s43076-020-00056-w
Wasserman, J. D. (2018). A History of Intelligence Assessment: The Unfinished Tapestry. In D. P. Flanagan & E. M. McDonough (Eds.), Contemporary intellectual assessment: theories, tests, and issues (4th ed., pp. 3-55). Guilford Press.
Widaman, K. F. (1985). Hierarchically Nested Covariance Structure Models for Multitrait-Multimethod Data. Applied Psychological Measurement, 9(1), 1-26. https://doi.org/10.1177/014662168500900101
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Psico
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The submission of originals to Psico implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Psico as the site of original publication.
Creative Commons License
Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited.