Development and validation of second-order psychophysical contrast sensitivity measures
DOI:
https://doi.org/10.15448/1980-8623.2020.4.38077Keywords:
contrast sensitivity, second order, psychophysics, spatial perception, psychophysical methodsAbstract
The first-order Contrast Sensitivity (SC) measure is often used to assess spatial perception. Our goal was to develop and validate a second-order SC test for clinical application. Methodological changes were made in the psychophysical routine to reduce testing time and in the first experiment we validated the new methodology. In a second experiment, normal values were derived from the result of sixteen participants who were tested under the same conditions as the first experiment. Validity measures were obtained using Spearman-Brown Split-Half Reliability Coefficient for all tested spatial frequencies (r> 0.90). The development and validation of this new experiment for second-order SC measures will allow to advance in the studies of the basic mechanisms of the perception of space fo complex stimuli, as well as the clinical application in several diseases.
Downloads
References
Aaen-Stockdale, C., & Bowns, L. (2006). Motion-detection thresholds for first- and second-order gratings and plaids. Vision Research, 46(6-7), 925-931. doi:S0042-6989(05)00527-4 [pii];10.1016/j.visres.2005.10.006 [doi]
Aaen-Stockdale, C., Ledgeway, T., McGraw, P., & Hess, R. F. (2012). Interaction of first- and second-order signals in the extraction of global-motion and optic-flow. Vision Research, 68, 28-39. doi:S0042-6989(12)00205-2 [pii];10.1016/j.visres.2012.07.004 [doi]
Adams, D. L., & Zeki, S. (2001). Functional Organization of Macaque V3 for Stereoscopic Depth. Journal of Neurophysiology, 86(11), 3195-2202. doi:
Allard, R., & Faubert, J. (2013). No second-order motion system sensitive to high temporal frequencies. Journal of Vision, 13(5). doi:13.5.4 [pii];10.1167/13.5.4 [doi]
Amesbury, E. C., & Schallhorn, S. C. (2003). Contrast Sensitivity and Limits of Vision. International Ophthalmology Clinics, 43(2), 31-42. doi:
Atkinson, J., Braddick, O., & Braddick, F. (1974). Acuity and Contrast Sensitivity of Infant Vision. Nature, 247(5440), 403-404. doi:
Banks, M. S., & Salapatek, P. (1976). Contrast Sensitivity Function of Infant Visual-System. Vision Research, 16(8), 867-&. doi:
Barbot, A., Landy, M. S., & Carrasco, M. (2012). Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity. Journal of Vision, 12(8). doi:6 [pii];10.1167/12/8/6 [doi]
Bartoshuk, L. M., Duffy, V. B., Chapo, A. K., Fast, K., Yiee, J. H., Hoffman, H., & J., Snyder, D. J. (2004). From psychophysics to the clinic: missteps and advances. Food Quality and Preference, 15(7-8), 617-632. https://doi.org/10.1016/j.foodqual.2004.05.007
Bedwell, J. S., Chan, C. C., Cohen, O., Karbi, Y., Shamir, E., & Rassovsky, Y. (2013). The magnocellular visual pathway and facial emotion misattribution errors in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 44, 88-93. doi:10.1016/j.pnpbp.2013.01.015
Beige, J. B., Maurage, P., Mangelinckx, C., Leleux, D., Delatte, B., & Constant, E. (2017). Facial decoding in schizophrenia is underpinned by basic visual processing impairments. Psychiatry Research, 255, 167-172. doi:10.1016/j.psychres.2017.04.007
Bourne, J. A., Lui, L., Tweedale, R., & Rosa, M. G. (2004). First- and second-order stimulus length selectivity in New World monkey striate cortex. Eur.Journal of Neuroscience., 19(1), 169-180. doi:3082 [pii]
Brown, A. M., Opoku, F. O., & Stenger, M. R. (2018). Neonatal Contrast Sensitivity and Visual Acuity: Basic Psychophysics. Translational Vision Science & Technology, 7(3). doi:Artn 18 10.1167/Tvst.7.3.18
Brown, J. M., Breitmeyer, B. G., Hale, R. G., & Plummer, R. W. (2018). Contrast Sensitivity Indicates Processing Level of Visual Illusions. Journal of Experimental Psychology-Human Perception and Performance, 44(10), 1557-1566. doi:10.1037/xhp0000554
Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., . . . Javitt, D. C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry, 62(5), 495-504. doi:10.1001/archpsyc.62.5.495
Costa, M. F. (2011). Clinical Psychophysical Assessment of the ON- and OFF-Systems of the Magnocellular and Parvocellular Visual Pathways. Neuroscience & Medicine, 2, 330-340. doi:
Dixon, W. J., & Massey, F. J. (1969). Introduction to Statistical Analysis (3rd ed.). New York, N.Y.: McGraw-Hill.
Dovencioglu, D. N., Welchman, A. E., & Schofield, A. J. (2013). Perceptual learning of second order cues for layer decomposition. Vision Research, 77, 1-9. doi:S0042-6989(12)00365-3 [pii];10.1016/j.visres.2012.11.005 [doi]
Dumoulin, S. O., Baker, C. L., Jr., Hess, R. F., & Evans, A. C. (2003). Cortical specialization for processing first- and second-order motion. Cereb.Cortex, 13(12), 1375-1385. doi: https://doi.org/10.1093/cercor/bhg085
Dutta, P. & Horn, P. M. (1981). Low-frequency fluctuations in solids:1fnoise. Reviews of Modern Physics, 53(3), 497-516. https://doi.org/10.1103/RevModPhys.53.497
Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America, 4(12), 2379-2394. https://doi.org/10.1364/JOSAA.4.002379
Ginsburg, A. P. (2003). Contrast sensitivity and functional vision. Int Ophthalmol Clin, 43(2), 5-15. doi:10.1097/00004397-200343020-00004
Kawabe, T. & Miura, K. (2005). Mechanism responsible for texture transparency tunes to second-order structures. Vision Research, 45(3), 373-379. https://doi.org/10.1016/j.visres.2004.08.019
Kiorpes, L., Kiper, D. C., & Movshon, J. A. (1993). Contrast sensitivity and vernier acuity in amblyopic monkeys. Vision Research, 33(16), 2301-2311. doi:0042-6989(93)90107-8 [pii]
Koh, H. C., Milne, E., & Dobkins, K. (2010). Spatial Contrast Sensitivity in Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 40(8), 978-987. doi:10.1007/s10803-010-0953-7
Leguire, L. E., Algaze, A., Kashou, N. H., Lewis, J., Rogers, G. L., & Roberts, C. (2011). Relationship among fMRI, contrast sensitivity and visual acuity. Brain Research, 1367, 162-169. doi:10.1016/j.brainres.2010.10.082
Mukaddes, N. M., Kilincaslan, A., Kucukyazici, G., Sevketoglu, T., & Tuncer, S. (2007). Autism in visually impaired individuals. Psychiatry Clin Neurosci, 61(1), 39-44. doi:10.1111/j.1440-1819.2007.01608.x
O'Donnell, B. F., Potts, G. F., Nestor, P. G., Stylianopoulos, K. C., Shenton, M. E., & McCarley, R. W. (2002). Spatial frequency discrimination in schizophrenia. Journal of Abnormal Psychology, 111(4), 620-625. doi:10.1037//0021-843X.111.4.620
Oruc, I., Landy, M. S., & Pelli, D. G. (2006). Noise masking reveals channels for second-order letters. Vision Research, 46(8-9), 1493-1506. doi:S0042-6989(05)00432-3 [pii];10.1016/j.visres.2005.08.016 [doi]
Pelli, D. G. & Farell, B. (1999). Why use noise? Journal of the Optical Society of America, 16(3), 647-653.
Rogowitz, B. E., Huang, P.-C., Pappas, T. N., & Chen, C.-C. (2009). Pattern masking investigations of the second order visual mechanisms. Paper presented at the Human Vision and Electronic Imaging XIV, San Jose, California, United States. https://doi.org/10.1117/12.805817
Santos, N. A., Oliveira, A. B., Nogueira, R. M., & Simas, M. L. (2006). Mesopic radial frequency contrast sensitivity function for young and older adults. Brazilian Journal of Medical and Biological Research, 39(6), 791-794. doi:S0100-879X2006000600012 [pii];/S0100-879X2006000600012 [doi]
Schofield, A. J., Curzon-Jones, B., & Hollands, M. A. (2017). Reduced sensitivity for visual textures affects judgments of shape-from-shading and step-climbing behaviour in older adults. Exp Brain Res, 235(2), 573-583. https://doi.org/10.1007/s00221-016-4816-0
Schofield, A. J., & Georgeson, M. A. (2003). Sensitivity to contrast modulation: the spatial frequency dependence of second-order vision. Vision Research, 43(3), 243-259. doi:
Schofield, A. J., Rock, P. B., Sun, P., Jiang, X., & Georgeson, M. A. (2010). What is second-order vision for? Discriminating illumination versus material changes. Journal of Vision, 10(9), 2. doi:10.9.2 [pii];10.1167/10.9.2 [doi]
Silverstein, S., Keane, B. P., Blake, R., Giersch, A., Green, M., & Keri, S. (2015). Vision in schizophrenia: why it matters. Frontiers in Psychology, 6. doi:Artn 41 10.3389/Fpsyg.2015.00041
Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705-2739. doi:10.1016/j.visres.2009.08.005
Spiegel, D. P., Reynaud, A., Ruiz, T., Lague-Beauvais, M., Hess, R., & Farivar, R. (2016). First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury. Vision Research, 122, 43-50. doi:S0042-6989(16)00054-7 [pii];10.1016/j.visres.2016.03.004 [doi]
Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2015). Local and Global Limits on Visual Processing in Schizophrenia. Plos One, 10(2). doi:ARTN e011795110.1371/journal.pone.0117951
Tsui, J. M., & Pack, C. C. (2011). Contrast sensitivity of MT receptive field centers and surrounds. Journal of Neurophysiology, 106(4), 1888-1900. doi:jn.00165.2011 [pii];10.1152/jn.00165.2011 [doi]
Watson, A. B. (1992). Transfer of Contrast Sensitivity in Linear Visual Networks. Visual Neuroscience, 8(1), 65-76. doi:
Weinger, P. M., Zemon, V., Soorya, L., & Gordon, J. (2014). Low-contrast response deficits and increased neural noise in children with autism spectrum disorder. Neuropsychologia, 63, 10-18. doi:10.1016/j.neuropsychologia.2014.07.031
Westrick, Z. M., & Landy, M. S. (2013). Pooling of first-order inputs in second-order vision. Vision Research, 91, 108-117. doi:S0042-6989(13)00214-9 [pii];10.1016/j.visres.2013.08.005 [doi]
Wichmann, F. A., & Hill, J. (2001). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63(8), 1293-1313. doi:
Wong, E. H., & Levi, D. M. (2005). Second-order spatial summation in amblyopia. Vision Research, 45(21), 2799-2809. doi:S0042-6989(05)00271-3 [pii];10.1016/j.visres.2005.05.020 [doi]
Yang, Y., Wang, Y. J., Zhang, C., Zhu, J. J., & Yu, Y. Q. (2019). Neuroanatomical substrates underlying contrast sensitivity. Quantitative Imaging in Medicine and Surgery, 9(3), 503-509. doi:10.21037/qims.2019.03.03
Zana, Y., & Cavalcanti, C. G. T. (2005). Contrast sensitivity functions to stimuli defined in Cartesian, polar and hyperbolic coordinates. Spatial Vision, 18(1), 85-98.
Zele, A. J., Pokorny, J., Lee, D. Y., & Ireland, D. (2007). Anisometropic amblyopia: spatial contrast sensitivity deficits in inferred magnocellular and parvocellular vision. Investigative Ophthalmology & Visual Science, 48(8), 3622-3631. doi:48/8/3622
Zheng, X. W., Xu, G. H., Wang, Y. Y., Han, C. C., Du, C. H., Yan, W. A., . . . Liang, R. H. (2019). Objective and quantitative assessment of visual acuity and contrast sensitivity based on steady-state motion visual evoked potentials using concentric-ring paradigm. Documenta Ophthalmologica, 139(2), 123-136. doi:10.1007/s10633-019-09702-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Psico
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The submission of originals to Psico implies the transfer by the authors of the right for publication. Authors retain copyright and grant the journal right of first publication. If the authors wish to include the same data into another publication, they must cite Psico as the site of original publication.
Creative Commons License
Except where otherwise specified, material published in this journal is licensed under a Creative Commons Attribution 4.0 International license, which allows unrestricted use, distribution and reproduction in any medium, provided the original publication is correctly cited.